Metal to insulator transition in epitaxial graphene induced by molecular doping.

نویسندگان

  • S Y Zhou
  • D A Siegel
  • A V Fedorov
  • A Lanzara
چکیده

The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator, is one of the key challenges of modern electronics. By employing angle-resolved photoemission spectroscopy we find that a reversible metal to insulator transition and a fine-tuning of the charge carriers from electrons to holes can be achieved in epitaxial bilayer and single layer graphene by molecular doping. The effects of electron screening and disorder are also discussed. These results demonstrate that epitaxial graphene is suitable for electronics applications, as well as provide new opportunities for studying the hole doping regime of the Dirac cone in graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping.

High-quality Sb2Te3 films are obtained by molecular beam epitaxy on a graphene substrate and investigated by in situ scanning tunneling microscopy and spectroscopy. Intrinsic defects responsible for the natural p-type conductivity of Sb2Te3 are identified to be the Sb vacancies and Sb(Te) antisites in agreement with first-principles calculations. By minimizing defect densities, coupled with a t...

متن کامل

Strain-induced significant increase in metal-insulator transition temperature in oxygen-deficient Fe oxide epitaxial thin films

Oxygen coordination of transition metals is a key for functional properties of transition-metal oxides, because hybridization of transition-metal d and oxygen p orbitals determines correlations between charges, spins and lattices. Strain often modifies the oxygen coordination environment and affects such correlations in the oxides, resulting in the emergence of unusual properties and, in some c...

متن کامل

Chemical gating of epitaxial graphene through ultrathin oxide layers.

We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grow...

متن کامل

Structural and Electronic Properties of Epitaxial Graphene Superstructures on Transition Metal Surfaces: The Role of the Pinning Points

Graphene growth on metal surfaces is one of the most promising routes towards scalable production of high-quality graphene suitable for industrial applications. Conventionally, the growth of graphene is carried out on weakly interacting surfaces – typically Cu foils – where the substrate plays a double role: first, as a catalyst; and second, as an easy-to-remove platform. Several substrates are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 101 8  شماره 

صفحات  -

تاریخ انتشار 2008